INTERACTION OF VIBRATIONAL MODES IN 1,4-FLUOROBENZYL ALCOHOL AS REVEALED BY ROTATION-ALLY RESOLVED ELECTRONIC SPECTROSCOPY

<u>ALEXEI E. NIKOLAEV</u> and DAVID W. PRATT, *Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260^a*.

1,4-Fluorobenzyl alcohol (FBA) exhibits a number of closely spaced ($\sim 50 \text{ cm}^{-1}$) bands in its vibrationally resolved S₁ \leftarrow S₀ electronic spectrum at ~ 269 nm, previously attributed to a -CH₂OH torsional mode. We report here a rotationally resolved study of the four members of this progression. All bands can be fit with rigid rotor Hamiltonians; a comparison of the parameters obtained from these fits shows that all bands belong to the same conformer. All bands exhibit a ~ 300 MHz splitting due to the torsion-rotation interaction. Band 3 and 4 also exhibit splitting (of ~ 100 and ~ 800 Mhz, respectively) due to interactions with other low energy vibrational modes. The nature of these modes and their possible participation in the energy relaxation pathways will be discussed.

^aWork supported by NSF.