Rotational spectra of several isotopomers of the Ne-H$_{2}$S van der Waals dimer were measured in the frequency range from 4 to 22 GHz, using a pulsed molecular beam Fourier transform microwave spectrometer. Two $K=0$ progressions were recorded for the symmetrical isotopomers (with H$_{2}$S/D$_{2}$S). This doubling is attributed to an internal rotation motion of the H$_{2}$S moiety within the complex. The two states can be correlated to the 0$_{00}$ and 1$_{01}$ internal rotor states of free H$_{2}$S and D$_{2}$S. Only one $K=0$ progression was measured for Ne-DSH. The excited internal rotor state is no longer metastable since the symmetry constraints no longer apply. An anomalous isotope effect observed in Ar-H$_{2}$S, where the substitution of hydrogen by deuterium causes an increase in the ground state B rotational constant,a was not observed here, in agreement with the ab initio study by Dykstra and co-workers.b Nuclear quadrupole hyperfine structure was resolved or partially resolved for isotopomers containing 35S and D, respectively, and the corresponding quadrupole coupling constants were determined. These were used to derive information about the intermolecular dynamics. The results are compared with those of Ar-H$_{2}$S and Ar-H$_{2}$O.