THE MOLECULAR STRUCTURES OF 1,2-DISELENIN AND 2-SELENATHIIN

J. Z. GILLIES, Department of Chemistry, Siena College, Loudonville, NY 12211; C. W. GILLIES and C. NATHAN, Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180.

The rotational spectra of the 1,2-dichalcogenins, 1,2-diselenin and 2-selenathiin, were obtained with a pulsed-beam Fourier-transform microwave spectrometer. The least squares fit of the observed μ_b -type transitions of the ⁸⁰Se⁸⁰Se isotopomer of 1,2-diselenin to a semi rigid Watson Hamiltonian gave rotational constants of A = 2081.4262(9) MHz, B = 1659.1768(9) MHz and C = 1003.0117(4) MHz. Nuclear spin statistical weights, the presence of only μ_b -type transitions, and a large inertial defect of $\Delta = -43.5389 \text{ u}\cdot\text{Å}^2$ show 1,2-diselenin has C₂ symmetry. The six-member ring, CH=CH-CH=CH-Se-Se, is twisted about the Se-Se bond and substitution coordinates obtained from the ⁷⁸Se⁸⁰Se and ⁸⁰Se⁸⁰Se isotopic moments of inertia give a Se-Se bond distance of 2.325(3) Å. An analogous fit of the observed μ_a - and μ_b -type transitions of the ⁸⁰Se³²S isotopomer of 2-selenathiin gave rotational constants of A = 2983.8426(6) MHz, B = 2056.7288(6) MHz and C = 1325.1405(2) MHz. The large inertial defect $\Delta = -33.7140 \text{ u}\cdot\text{Å}^2$ shows the ring of 2-selenathiin, CH=CH-CH=CH-Se-S, is not planar. An r_s Se-S bond distance of 2.205(16) Å is calculated from substitution coordinates obtained from the ⁸⁰Se³²S, ⁷⁸Se³²S, and ⁸⁰Se³⁴S isotopic moments of inertia. The structural parameters derived from the spectroscopic data will be compared to ab initio geometries of the 1,2-dichalcogenins.