ANALYSIS OF THE 0_0^0 AND 3_1^0 BANDS IN THE $\tilde{A} - \tilde{X}$ TRANSITION OF YC$_2$

ROBERT R. BOUSQUET, KEI-ICHI C. NAMIKI, TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; ANTHONY J. MERER, Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

The 0_0^0 and 3_1^0 band systems of the $\tilde{A}^2A_1 \leftrightarrow \tilde{X}^2A_1$ transition of YC$_2$ were recorded in high resolution using laser-induced fluorescence on molecules produced in a molecular beam. Asymmetry splittings in the \tilde{X}^2A_1 state were measured by recording the optical spectrum in the presence of a weak static electric field a. Several pure rotational transitions were also recorded in the (0,0,0) \tilde{X}^2A_1 vibronic state using pump/probe microwave optical double resonance spectroscopy. The three sets of parameters were combined to produce fine and hyperfine parameters for the \tilde{A} and \tilde{X} states. Rotational constants and structural parameters were determined for both electronic states by fitting the combined data sets to an effective hamiltonian for a rigid molecule. An interpretation of the fine structure parameters will be given.