TORSIONAL SPLITTINGS IN SMALL-AMPLITUDE VIBRATIONAL FUNDAMENTAL STATES OF METHANOL-TYPE MOLECULES

JON T. HOUGEN, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8441; RONALD M. LEES, Department of Physical Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada.

Group-theoretical methods are used to show that inverted torsional splittings in fundamental levels of small-amplitude vibrations of methanol-like molecules can be parametrized and understood in terms of the energy level patterns induced when a pair of high-barrier torsionally split components of given \(\nu \) and \(^1A + ^1E \) symmetry species in the molecular symmetry group \(G_6 \) is allowed to interact with small-amplitude vibrational modes of symmetry \(\nu E \). Such doubly degenerate \(\nu E \) vibrational modes arise rather naturally in \(G_6 \) (isomorphic with the point-group \(C_{3v} \)) for those methyl-group vibrations in point-group-\(C_\alpha \) asymmetric tops like \(\text{CH}_3\text{CHO} \) that are analogs of the degenerate methyl-group stretch, bend, and rocking vibrations in point-group-\(C_{3v} \) symmetric tops like \(\text{CH}_3\text{C}≡\text{C-H} \). The present group-theoretical treatment is somewhat different than, but (as a comparison of model parameters shows) still fundamentally similar to, the recent local mode explanation of inverted torsional splittings in the C-H stretching fundamental region in methanol. The formalism has been applied to new torsional splitting data for the \(\text{CH}_3 \)-rocking modes, and is found to give moderate agreement.