MILLIMETER-WAVE SPECTROSCOPY OF THE HCN-H\textsubscript{2} CLUSTER

M. ISHIGURO and T. TANAKA, Department of Chemistry, Faculty of Science, Kyushu University 33, Hakozaki, Higashiku, Fukuoka 812-8581, Japan; C. J. WHITHAM, K. HARADA and K. TANAKA, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.

Millimeter-wave absorption spectroscopy combined with a pulsed-jet expansion technique was applied to the measurement of the rotational and rovibrational transitions of the HCN-H\textsubscript{2} cluster in the frequency region of 75–150 GHz. So far, four rotational lines for the ground Σ_0 state of the HCN-(o-H\textsubscript{2}) cluster split into hyperfine structure due to the nitrogen nucleus were observed. Rotational constant $B_0 = 12899.718(20)$ MHz and centrifugal distortion constant $D_0 = 12.2470(16)$ MHz were derived together with its higher constants. The hyperfine constants determined $eqQ = -2.830(33)$ MHz which is smaller than that of HCN molecule means a large amplitude motion of HCN of $<\theta > = 31.1$ degree in the ground linear form. The bond length between HCN and H\textsubscript{2} parts is derived to be 3.90 Å. Some lines belonging to the $\Sigma_1 - \Sigma_0$ van der Waals bending band of HCN-(o-H\textsubscript{2}) were also observed. The $\Sigma_1 - \Sigma_0$ van der Waals bending frequency 136.831 GHz of HCN-(o-H\textsubscript{2}) is larger than that of He-HCN 98.70 GHz, but much smaller than that of Ar-HCN 164.89 GHz. The hyperfine constant in the Σ_1 state indicate the cluster has T-shape in the excited state of the vdW bending mode. A search of the rotational lines of the ground Σ_0 state of HCN-(p-H\textsubscript{2}) and the Π_0 state of HCN-(o-H\textsubscript{2}) are now in progress as well as the vdW mode rovibrational lines for both HCN-(o-H\textsubscript{2}) and -(p-H\textsubscript{2}) clusters.