AN AB INITIO MOLECULAR ORBITAL STUDY OF LOW LYING ELECTRONIC EXCITED STATES OF FeC

SACHIKO S. ITONO, TETSUYA TAKETSUGU, TSUNEO HIRANO, Department of Chemistry, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan; UMPEI NAGASHIMA, National Institute for Advanced Interdisciplinary Research, Ibaraki 305-8562, Japan; K. AIUCHI, K. TSUJI, and K. SHIBUYA, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.

Spectroscopic constants and energy levels of the ground and low-lying excited states of iron carbide, FeC, have been calculated from potential energy functions obtained by the *ab initio* MR-SDCI molecular orbital approach. Investigated states are ¹ Δ and ⁵ Π , both of which are proposed by DF spectra^{*a*} as a candidate for the new $\Omega = 2$ electronic state observed above the ³ Δ_2 state by 3460 cm⁻¹. The character of each electronic state has been discussed theoretically. Contrary to the previous tentative assignment to ⁵ Π , the MR-SDCI results predict that the observed $\Omega = 2$ state should be the ¹ Δ state and be located at 3252 cm⁻¹ above ³ Δ_2 . The spin-orbit coupling constant for ³ Δ state has also been calculated.

^aK. Aiuchi, K. Tsuji and K. Shibuya Chem. Phys. Lett. <u>309</u>, 229, (1999)