A COMBINED FREQUENCY ANALYSIS OF THE ν_3, ν_9, AND THE FAR INFRARED TORSIONAL SPECTRA OF ETHANE

N. MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada, T2N 1N4.

The lowest frequency nondegenerate fundamental band ν_3 of ethane is Raman active and centered near 992 cm^{-1}. A stimulated Raman spectrum of the Q branch for this band (at a resolution of 0.0055 cm^{-1}) has been recorded by Bermejo et al.a The torsion-rotation branch with $\sigma = 3$ is perturbed by over 1 cm^{-1}.

The lowest frequency degenerate fundamental band ν_9 is infrared active and occurs in the 12-μm region. A high resolution (0.0014 cm^{-1}) Fourier transform spectrum of this band has been measured by Moazzen-Ahmadi et al.b The observed torsional splittings for this band are substantially larger than expected simply from the observed increase in the barrier height. Because of the proximity of the upper level $(i = -1; K = 17, \sigma = 0)$ in $\nu_9 = 1$ with its interacting partner $(\tau_9 = 0, \nu_4 = 3)$ a perturbation allowed band $3\nu_4$ has also been observed.

We have carried out a combined frequency analysis of ν_3, ν_9, and $3\nu_4$ bands together with the far infrared torsional spectra in the ground vibrational state (gs). A vibration-torsion-rotation Hamiltonian with 32 fitting parameters was used. Three interacting torsional stacks, one for each of the vibrational state, were considered. The large torsional splitting in the ν_9 band is attributed to Coriolis-like interations between the torsional stacks of gs and $\nu_9 = 1$ whereas the large shift for the torsion-rotation branch with $\sigma = 3$ in the ν_9 band is attributed to a Fermi-like interaction between the torsional stacks of gs and $\nu_9 = 1$.

The details of this analysis will be presented.
