The vibronic spectrum of allyl radical (CH$_2$CHCH$_2$) at 4.9-8.2 eV has been observed using 1+1 and 2+1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy. The allyl radicals were produced in the nozzle of a supersonic jet expansion by the pyrolysis of allyl iodide. The vibronic assignment for the congested B$_1$1A$_1$($\pi \rightarrow 3s$), C$_2$2B$_2$($\pi \rightarrow 3px$) and D$_1$1B$_2$($\pi \rightarrow n^*$) bands at 4.9-5.2 eV will be reexamined with aid of the calculated Franck-Condon factors, especially for the weaker transitions at >5.2 eV which were not identified in previous study.a Three new electronic bands are observed for the first time and assigned to the 3B$_1$($\pi \rightarrow 3dx_z$), 2A$_2$($\pi \rightarrow 3dx_y$) and 3A$_1$($\pi \rightarrow 3pz$) Rydberg states based on the ab initio CI calculation.b The observed band origins (in eV) at 6.460 (3B$_1$), 6.607 (2A$_2$) and 7.605 (3A$_1$) are compared with the calculated vertical energies of 6.41, 6.62 and 7.55, respectively. Vibrational progressions with the gross spacings of \sim420 cm$^{-1}$ are observed in the Rydberg states. The totally symmetric CCC bending in the excited state is responsible for the observed progression as that reported in the B state.c
