The high-resolution Fourier transform spectrum of CH₃OH has been investigated in the 1400-1650 cm⁻¹ region, containing the CH₃-bending fundamental bands. Twenty-two perpendicular ΔK = ±1 subbands have been identified so far, with origins ranging from 1490 to 1570 cm⁻¹ for transitions K = 2 ← 1 up to 11 ← 10 for various torsional symmetries. Assignment of the subbands to the ν₄ in-plane (A') or ν₁₀ out-of-plane (A'') asymmetric methyl-bending modes is not yet clear, but the one subband so far observed with resolved K-doublet structure suggests C-type selection rules consistent with a ν₀ vibrational assignment. The pattern of the K-reduced torsion-vibration energy σ-curves is inverted compared to the normal 1-dimensional picture for n = 0 torsional levels, in agreement with prediction based on fitting torsional variation of ab initio CH₃-bending frequencies to a local mode model. However, the periodicity of the curves is unusual and significantly different from the ground state. The vibrational energy for the bending mode is 1481 cm⁻¹, and the mean B-value is 0.008 cm⁻¹ higher than that of the vibrational ground state.