DIMERS OF ALKALINE EARTH METAL HALIDE RADICALS, $(MX)_2$ (M = Be, Mg, Ca; X = F, Cl): A THEORETICAL STUDY

G.P. LI and I.P. HAMILTON, Department of Chemistry, Wilfrid Laurier University, Waterloo, Canada N2L 3C5.

Alkaline earth metal halide radicals, MX, di-halides, MX₂, and halide radical dimers, (MX)₂ (M = Be, Mg, Ca and X = F, Cl), are studied using density functional theory, MP2 and CCSD(T) methods. The ground states of MX₂ are all singlet $^{1}\Sigma_{g}^{+}$ with $D_{\infty h}$ symmetry except that of CaF₂ which is $^{1}A_{1}$ with C_{2v} symmetry. The ground states of (MX)₂ are all singlet $^{1}A_{g}$ with D_{2h} symmetry except that of (CaF)₂ which is $^{3}A_{1}$ with C_{2v} (distorted D_{2h}) symmetry. Stabilities of the halide radical dimers have been examined versus some reactions, such as (MX)₂ \longrightarrow 2M + 2X, (MX)₂ \longrightarrow M₂ + X₂, (MX)₂ \longrightarrow 2MX and (MX)₂ \longrightarrow MX₂ + M. Several transition states of these reactions have been established at the MP2/6-311+G* level. The calculated results for the halide radicals and di-halides are in good agreement with experimental values. The calculated results for the halide radical dimers can serve as a guide for spectroscopic studies of these species.