FOURIER TRANSFORM SPECTRA OF COPPER DICHLORIDE : RENNER-TELLER EFFECT IN ROVIBRONIC LEVELS OF THE GROUND STATE

P. CROZET, E. BOSCH, A. J. ROSS, Laboratoire de Spectrométrie Ionique et Moléculaire (UMR 5579 CNRS), Bâtiment 205, Université Lyon I, Campus la Doua, 69622 Villeurbanne Cedex, France; and J. M. BROWN, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, England.

High-resolution Fourier transform spectra of the laser-induced fluorescence of $^{63}\text{Cu}^{37}\text{Cl}_2$ produced in a cell have been recorded following excitation of a single vibronic level of the $E^5\Pi_g$ electronic state. Fluorescence occurs in combination bands to a broad spread of rovibrational levels in the ground electronic state, $X^5\Pi_g(3/2)$. A global rovibronic model is proposed for the ground state based on an effective Hamiltonian, which fits experimental data (2782 fluorescence lines, lower state quantum numbers : $v_1 = 0 - 6, v_2 = 0 - 2, v_3 = 0 - 4, \text{ and } J = 4 \frac{1}{2} - 80 \frac{1}{2}$) with a root mean square error of 0.019 cm$^{-1}$. Vibrational, rotational and Renner-Teller parameters are obtained (e.g. $\omega_2 = 95.195 \text{ cm}^{-1}, B_\epsilon = 0.055106(3) \text{ cm}^{-1}, \epsilon = -0.1893$). A revised value for the equilibrium internuclear distance Cu-Cl is deduced: r_e (Cu-Cl) = 0.20341(3) nm.