
COREY J. EVANS and MICHAEL C. L. GERRY, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B. C., Canada, V6T 1Z1.

The rotational spectra of the complexes Ar-CuF, Ar-CuCl and Ar-CuBr have been measured between 5-22 GHz using a cavity pulsed jet Fourier transform microwave spectrometer. They were prepared by ablating Cu metal with a Nd:YAG laser (532 nm) and allowing the vapour to react with a suitable precursor contained as <1% in the Ar backing gas of the jet. The complexes are linear and rather rigid, with the Ar-Cu stretching frequency estimated as ~200 cm$^{-1}$. Ground state effective (τ_0) and, where possible, substitution (τ_x) and double substitution (τ_d) geometries have been obtained. The Ar-Cu bonds are short (2.22-2.30 Å). Large changes in the Cu nuclear quadrupole coupling constants indicate extensive charge rearrangement on complex formation. *Ab initio* calculations at the MP2 level of theory predict an Ar-Cu bond energy in Ar-CuF of ~47 kJ mol$^{-1}$, along with a transfer of ~0.1 electron from Ar to Cu. The whole picture is consistent with weak Ar-Cu covalent bonding.