FOURIER TRANSFORM INFRARED EMISSION SPECTROSCOPY OF SeH

R. S. RAM, Department of Chemistry, University of Arizona, Tucson, AZ 85721; P. F. BERNATH, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

The infrared vibration-rotation bands of SeH have been measured in the X²II ground state using a Fourier transform spectrometer. The bands were observed in a microwave discharge of a mixture of H₂ and Se in the presence of He. The rotational structure of the 1-0, 2-1, 3-2 bands of the X²II_{3/2} spin component and the 1-0 band of X ²II_{1/2} spin component has been observed in the 1800-2600 cm¹ region. The spectroscopic constants for the ground state of SeH have been determined from a fit where the spin orbit coupling constant A₀ was fixed to the value obtained from the analysis of the infrared laser magnetic resonance data [Ashworth & Brown, J. Chem. Soc. Faraday Trans. II **86**, 1995 (1990)]. The principal ground state molecular constants obtained are: $\omega_e = 2421.73029(595)$ cm¹, $\omega_e x_e = 44.61684(278)$ cm¹, $\omega_e y_e = 0.20979(57)$ cm¹, B_e=7.898953(683) cm¹, $\alpha_e = 0.220694(382)$ cm¹ and $r_e = 1.464341(63)$ Å.

This work is the first determination of the equilibrium molecular constants of the X²II state of SeH.