QUANTUM SOLVATION: PATH INTEGRAL MONTE CARLO CALCULATIONS OF THE H$_2$-HF AND D$_2$-HF BINARY COMPLEXES IN LIQUID HELIUM DROPLETS

DAVID T. MOORE, ROGER E. MILLER, Department of Chemistry, University of North Carolina, Chapel Hill NC, 27599.

Path Integral Monte Carlo (PIMC) simulations were performed for the H$_2$-HF complex in helium droplets. These simulations are based on the quantum-classical isomorphisma,b and correctly incorporate quantum effects at the temperature of the droplets (0.37K). For comparison, simulations of the D$_2$-HF complex in helium droplets were also performed in order to compare the effects of the quantum helium solvent on the heavier D$_2$ molecule. Interpretations of the experimental results (from the preceding talk) based on these simulations will be discussed.

aD. M. Ceperley, Rev. Mod. Phys. 67, 279 [1995]