AB INITIO CALCULATIONS OF THE NEPTUNYL ION, NpO_2^{2+} AND OF THE DIOXONEPTUNIUM(+) ION, NpO_2^{+}

<u>SPIRIDOULA MATSIKA</u>, RUSSELL M. PITZER, *Department of Chemistry, The Ohio State University, 100 W.18th Avenue, Columbus, OH, 43210*; ,.

Spin-orbit Configuration Interaction calculations based on Relativistic Effective Core Potentials (RECPs) were used for the study of the linear NpO₂²⁺ and NpO₂⁺ ions. The ground state of NpO₂²⁺ is $\frac{5}{2}u$ ($^2\Delta_u$ + $^2\Phi_u$) with equilibrium Np-O bond distance, R = 1.66 Å and symmetric stretch vibrational frequency, ω = 1059 cm⁻¹. NpO₂⁺ has a 4 g ($^3H_{4g}$, 3 g ground state with R = 1.73 Å and ω = 913 cm⁻¹. The spectra for both ions have $f \rightarrow f$ transitions at low energies and charge-transfer type transitions at higher energies.