AN EXPERIMENTAL DETERMINATION OF ANHARMONIC TERMS IN THE VIBRATIONAL HAMILTONIAN OF HCO⁺.

<u>ROBERT J. FOLTYNOWICZ</u>, JASON D. ROBINSON, HARTMUT G. HEDDERICH and EDWARD R. GRANT, *Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393*.

We report a harmonic frequency $\omega_2 = 842.464 \text{ cm}^{-1}$, an anharmonic constant, $x_{22} = -3.15 \text{ cm}^{-1}$ and a vibrational angular momentum splitting constant $g_{22} = 3.22 \text{ cm}^{-1}$ for the ground state ${}^{1}\Sigma^{+}$ for HCO⁺. The constants are calculated based on experimentally measured Rydberg Series from the $3p\pi$ electronic state which converge to the rovibrational thresholds of the cation (00⁰0), (01¹0), (02⁰0) and (02²0). Along with these thresholds, we use the experimentally measured x_{23} anharmonic constant from Oka *et al.* and the theoretical x_{12} anharmonic constant from Puzzarini *et al.* and Lee *et al.* To further characterize the bending coordinate anharmonicity of the potential energy surface of HCO⁺, we assign Rydberg series obtained from the $3p\pi \, {}^{2}\Pi \, (030) \, \Sigma^{-} \, N' = 0$ and 2 converging to rovibrational thresholds (03¹0) and (03³0) in the cation. ¿From this extrapolation, we refine our anharmonic constants for the ground electronic state for HCO⁺.