1-UNCOUPLING AND ROTATIONAL STRUCTURE IN VIBRATIONALLY AUTOIONIZING RYDBERG STATES OF HCO CONVERGING TO THE (010) LIMIT

ERIC J. ZÜCKERMAN, HARTMUT G. HEDDERICH and EDWARD R. GRANT, Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393.

We have obtained (1+1') double resonance spectra autoionizing high Rydberg states of HCO. Scans originate from $3p\pi^{2}\Pi N = 0 - 5$ intermediate states. These spectra cover Rydberg states of binding energies ranging from 650 to 400 cm^{-1} , converging to the (010) fundamental of HCO⁺. Using our highly accurate ionization thresholds and by applying the Rydberg model, simulations which neglect coupling are found to reasonably represent the experimental spectra within a minimal quantum defect basis. Analysis based on Multichannel Quantum Defect Theory, which includes coupling, is underway.