PROBING THE ELECTRONIC STRUCTURE OF YbCl USING LASER SPECTROSCOPY

TODD C. MELVILLE and JOHN A. COXON, Department of Chemistry, Dalhousie University, Halifax, N.S. Canada B3H 4J3.

The high resolution spectrum of the $A^3\Pi - X^3\Sigma^+$ transition of YbCl has been recorded near 550 nm using laser excitation spectroscopy. The output of a Coherent 699-29 ring dye laser operating in single frequency mode was used to obtain Doppler-limited spectra. Selective detection of laser induced fluorescence was utilized to record spectra with an accuracy of 0.003 cm$^{-1}$. Unequivocal assignment of the rotational numbering was obtained using resolved fluorescence spectra. Data from two isotopomers, 172Yb35Cl and 174Yb35Cl, have been employed in a least-squares fit of sets of molecular constants. The rotational analysis of the $A - X$ system will be discussed.