SUBMILLIMETER-WAVE SPECTROSCOPY OF THE VAN DER WAALS BENDING BAND OF Ar-HBr

<u>KENSUKE HARADA</u>, ASAO MIZOGUCHI, STEPHANE BAILLEUX, and KEIICHI TANAKA, *Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 Japan.*

The Ar-HBr cluster has a large amplitude intermolecular bending motion. The excited states of the van der Waals vibrations were observed by infrared^{*a*} and far infrared^{*b*} laser spectroscopy. The cluster has a nearly "linear" structure of Ar-HBr in the ground state (Σ_0 state), while the cluster is estimated to have a nearly "anti-linear" structure of Ar-BrH in the first excited state (Σ_1 state) of the intermolecular bending vibration.

In the present study, we have observed submillimeter-wave transitions of the $\Sigma_1 - \Sigma_0$ band of Ar-HBr generated in a pulsed supersonic jet expansion. The observed band origins of the $\Sigma_1 - \Sigma_0$ bands of Ar-H⁷⁹Br and Ar-H⁸¹Br are 6 and 27 MHz lower than those reported by combination differences of infrared data^{*a*}. The eQq constants in the Σ_1 states were determined for the first time to be 260.90(12) and 217.854(98) MHz for Ar-H⁷⁹Br and Ar-H⁸¹Br, respectively, which agree well with the estimated values (238 and 199 MHz for Ar-H⁷⁹Br and Ar-H⁸¹Br) from a potential calculation^{*c*}. The $\cos^{-1}\sqrt{\langle \cos^2\theta \rangle}$ value is 144.3° in the Σ_1 state, which is different from the value, 42.1°, in the ground state, where the θ is an angle between a cluster axis and a HBr monomer axis.

^aJ. Han, A. L. McIntosh, Z. Wang, R. R. Lucchese, and J. W. Bevan, Chem. Phys. Lett. 265, 209 (1997).

^bD. W. Firth, M. A. Dvorak, S. W. Reeve, R. S. Ford, and K. R. Leopold, Chem. Phys. Lett. 168, 161 (1990).

^cJ. M. Hutson, J. Chem. Phys. **91**, 4455 (1989).