HYPERFINE INTERACTIONS IN CrN AND MoN

KEI-ICHI C. NAMIKI and <u>TIMOTHY C. STEIMLE</u>, Department of Chemistry and Biochemistry, Arizonia State University, Tempe, Az, 85287-1604.

Pure rotational transitions of 52 Cr¹⁴N and 98 Mo¹⁴N radicals in their $X^4\Sigma^-$ state were recorded using a pump/probe microwave-optical double resonance (PPMODR) technique from which the hyperfine parameters of 14 N (I = 1) were precisely determined. In addition, the (0, 0) $A^4\Pi - X^4\Sigma^-$ band system of a 53 CrN molecular beam sample was re-recorded ab from which the hyperfine parameters of 53 Cr (I = 3/2) were determined. A simple molecular orbital model is used to rationalise the newly determined hyperfine interactions for 53 Cr and 14 N in CrN and 14 N in MoN and the previously determined hyperfine interactions for other early transition metal mononitrides. An improved set of fine structure parameters for the CrN and MoN are determined.

^aW. J. Balfour, C. X. W. Qian, and C. Zhou J. Chem. Phys. 106, 4383 (1997).

^bC. Zhou, W. J. Balfour, and C. X. W. Qian J. Chem. Phys. 107, 4437 (1997).