HYPERFINE INTERACTIONS IN CrN AND MoN

KEI-ICHI C. NAMIKI and TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Az. 85287-1604.

Pure rotational transitions of 52Cr14N and 96Mo14N radicals in their $X^4\Sigma^-$ state were recorded using a pump/probe microwave-optical double resonance (PPM0DR) technique from which the hyperfine parameters of 14N ($I = 1$) were precisely determined. In addition, the (0, 0) $A^4\Pi - X^4\Sigma^-$ band system of a 52CrN molecular beam sample was re-recorded from which the hyperfine parameters of 52Cr ($I = 3/2$) were determined. A simple molecular orbital model is used to rationalise the newly determined hyperfine interactions for 52Cr and 14N in CrN and 14N in MoN and the previously determined hyperfine interactions for other early transition metal mononitrides. An improved set of fine structure parameters for the CrN and MoN are determined.
