INFRARED SPECTRUM OF THE Ar-HNH⁺ IONIC COMPLEX

O. DOPFER, S. A. NIZKORODOV, R. V. OLKHOV, J. P. MAIER, *Institut für Physikalische Chemie, Universität Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland*; and <u>K. HARADA</u>, *Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 Japan*.

Rotationally resolved infrared spectra of the ν_1 and ν_3 N-H stretching vibrations of the Ar-HNH⁺ radical ionic complex have been observed by means of photodissociation spectroscopy.^{*a*} The analysis of the rotational structure shows that the complex has a ${}^{3}\Sigma^{-}$ ground electronic state with a linear or quasi-linear proton-bound structure Ar-H-N-H⁺ characterized by an intermolecular center of mass separation of 3.085 Å. The origins of the ν_1 and ν_3 bands were determined as 2803.65(2) and 3287.36(2) cm⁻¹, and the frequency of the intermolecular stretch vibration, ν_s , as 170.4(6) cm⁻¹. Ab initio calculations performed at the UMP2 level of theory confirm that the quasi-linearity and the diradical character of HNH⁺ in its electronic ground state are not changed upon Ar complexation. The calculated properties of the intermolecular bond of the complex (D_e=1773 cm⁻¹, R_{Ar-H}~2.01 Å, $\nu_s \sim 185$ cm⁻¹) and the predicted complexation induced frequency shifts for ν_1 and ν_3 are in good agreement with the experimental results.

^aO. Dopfer, S. A. Nizkorodov, R. V. Olkhov, J. P. Maier, and K. Harada, J. Phys. Chem. A102, 10017 (1998).