A LASER PUMP-DISPERSED FLUORESCENCE PROBE APPROACH TO INELASTIC SCATTERING IN S $_1$ GLY-OXAL AT VARYING COLLISION ENERGIES

SAMUEL M. CLEGG, MARIANA D. DUCA, and CHARLES S. PARMENTER, Department of Chemistry, Indiana University, Bloomington, IN 47405.

A laser pump-dispersed fluorescence probe approach has been used to monitor state-to-state inelastic scattering from S₁ ($^{1}A_{u}$) transglyoxal in crossed molecular beams. The trio of collision partners H₂, He, and D₂ provided the unique opportunity to explore the relative influences of the center-of-mass collision energy (E_{cm}) versus the interaction potential energy surface (PES). The PES for glyoxal + H₂ ($E_{cm} = 650 \text{ cm}^{-1}$) and D₂ (770 cm⁻¹) are identical but the relative cross sections are vastly different. In contrast, when the kinematics were matched, as in the case for glyoxal + He (770 cm⁻¹) and D₂ (770 cm⁻¹), the distribution of cross sections were nearly identical. These observations indicate that the collision kinematics dominate inelastic scattering while the details of the PES play a minor role. The experiments presented here were designed to investigate this kinematic control by selectively controlling the relative velocity and thus the center-of-mass collision energy and momentum.