OBSERVATION AND *AB INITIO* CALCULATION OF THE TWO-PHOTON VIBRONIC SPECTROSCOPY OF JET-COOLED ALLENE AND PROPYNE

JAU-CHIN SHIEH, JIA-LIN CHANG, YI-JI LIN, A. M. MEBEL AND <u>YIT-TSONG CHEN</u>, Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, and Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 106, Taiwan.

The two-photon allowed vibronic spectra of jet-cooled allene (H₂CCCH₂) and propyne (H₃CCCH) at 7.5-9 eV have been observed by 2 + 1 REMPI spectroscopy. Excited electronic states of $2^{1}A_{1}$ (π -3p/ π - π^{*}), $2^{1}A_{2}$ (π -3p), $2^{1}B_{1}$ (π -3p) and $3^{1}A_{1}$ (π -3d/ π - π^{*}) in allene and ${}^{1}A_{2}$ (π - π^{*}) in propyne are responsible for the observed spectra according to recent *ab initio* calculations. Geometries of the singlet excited electronic states of allene and propyne have been optimized at the CASSCF level of theory with the 6-311(2+)G^{**} basis set. Vertical and adiabatic excitation energies, calculated by the MRCI and EOM-CCSD methods are compared with experiment. Vibrational frequencies and normal coordinates for the ground and excited states are used for the calculations of vibrational overlap integrals and Franck-Condon factors, taking into account distortion, displacement and normal mode mixing (Duschinsky matrix), as we demonstrated previously in the ethylene case.^{*a,b*} Major features of the observed vibronic spectra of allene and propyne will be interpreted on the basis of computed Franck-Condon factors. REMPI spectra to cover the energy range of 6 eV to ionization potential are undertaken.

^aA. M. Mebel, Y.-T. Chen and S. H. Lin, Chem. Phys. Lett., **258**, 53 (1996).

^bA. M. Mebel, Y.-T. Chen and S. H. Lin, J. Chem. Phys., **105**, 9007 (1996).