HIGH RESOLUTION FTIR SPECTROSCOPY OF THE ν_4 BANDS OF C₆H₆ AND C₆D₆

ROBERT L. SAMS, THOMAS A. BLAKE and STEVEN W. SHARPE, Pacific Northwest National Laboratory, P. O. Box 999, Mail Stop K8-88, 3020 Q Avenue, Richland, WA 99352.

We have re-examined the ν_4 bands (Herzberg numbering) of C_6H_6 and C_6D_6 using high resolution (0.0015 cm $^{-1}$) Fourier transform infrared spectroscopy. The spectra were taken with the benzene samples in a temperature stabilized cell (4°C), 20 cm in length. The -h6 sample spectrum (99.95 atom % $^{12}C_6$) was recorded with an MCT detector and KBr beamsplitter and the -d6 sample spectrum was recorded with a silicon bolometer detector and mylar beamsplitter. For the ν_4 band of C_6H_6 , we have fit the following preliminary spectroscopic constants: $\nu_0 = 673.9747(2)$ cm $^{-1}$, B' = 0.1896388(13) cm $^{-1}$, $(C' - B') - (C'' - B'') = 1.709(2) \times 10^{-4}$ cm $^{-1}$, $D'_J = 4.106(60) \times 10^{-8}$ cm $^{-1}$, $D'_K - D'_K = -2.9(9) \times 10^{-10}$ cm $^{-1}$, $D'_{JK} = -6.89(6) \times 10^{-8}$ cm $^{-1}$, B'' = 0.1897739(10) cm $^{-1}$, $D'_J = 4.123(45) \times 10^{-8}$ cm $^{-1}$, $D'_{JK} = -6.94(5) \times 10^{-8}$ cm $^{-1}$. For the ν_4 band of C_6D_6 , we have fit the following preliminary spectroscopic constants: $\nu_0 = 496.2086(1)$ cm $^{-1}$, B' = 0.156919(5) cm $^{-1}$, and B'' = 0.157016(5) cm $^{-1}$. Band centers of the observed sequences of hot bands for both isotopic modifications will be reported.