THE $B\,^3\Sigma_u^- \leftarrow b\,^1\Sigma_g^+$ TRANSITION OF MOLECULAR OXYGEN

B. R. LEWIS, S. T. GIBSON, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia; T. G. SLANGER, <u>D. L. HUESTIS</u>, Molecular Physics Laboratory, SRI International, Menlo Park, CA 94025.

The origin of the intensity of the $B^3\Sigma_u^-\leftarrow b^1\Sigma_g^+$ transition of molecular oxygen, first observed recently by Eppink *et al.* [J. Chem. Phys. **108**, 1305 (1998).], is discussed. It is shown that the $B\leftarrow b$ transition borrows its intensity principally from the dipole-allowed $B\leftarrow X$ transition, through spin-orbit mixing between the $X^3\Sigma_g^-$ and $b^1\Sigma_g^+$ states. Estimated continuum photoabsorption cross sections and discrete oscillator strengths for the $B\leftarrow b$ system are presented.