MICROWAVE SPECTRA AND NUCLEAR QUADRUPOLE COUPLING IN F₃B-N(CH₃)₃ AND (CH₃)₃B-N(CH₃)₃

D. L. FIACCO, <u>S. W. HUNT</u>, and K. R. LEOPOLD, *Department of Chemistry, University of Minnesota, Minneapolis, MN 55455*.

The donor-acceptor complexes F_3B -N(CH₃)₃ and (CH₃)₃B-N(CH₃)₃ have been studied by Fourier transform microwave spectroscopy. The rotational constants for both species are consistent with the literature values. For F_3B -N(CH₃)₃, the J=0-1 and 1-2 transitions have been fully analyzed for the ^{10}B , ^{14}B , and ^{15}N species. A single state is observed, with no evidence of internal rotation. For (CH₃)₃B-N(CH₃)₃, the 0-1 and 1-2 transitions have been recorded and analyzed. In this case, two states are observed, with an intensity ratio of about 10:1. For both systems, a Townes and Dailey analysis of the ^{14}N nuclear quadrupole coupling constants has been used to provide information about the electronic structure of the complexes. In the case of F_3B -N(CH₃)₃, about 0.6 electrons are transferred from the trimethylamine to the BF₃ upon formation of the donor-acceptor bond, while for (CH₃)₃B-N(CH₃)₃ a value of 0.42 electrons is obtained. These results will be compared with similar measurements for related adducts of ammonia and trimethylamine.