STRUCTURAL ANALYSIS AND DIPOLE MOMENT DETERMINATION OF THE GAS-PHASE TRIMETHY-LAMINE SULFUR TRIOXIDE COMPLEX

D. L. FIACCO, M. E. OTT, and K. R. LEOPOLD, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455; A. TORO, Pontifical Catholic University of Puerto Rico, Ponce, PR 00731-6382.

The structure and dipole moment of the Lewis acid-base adduct $(CH_3)_3N$ -SO $_3$ have been determined by microwave spectroscopy. Analysis yields an N-S bond length of 1.914(33) \mathring{A} and an NSO angle of $100.0(4)^\circ$. These data indicate that the formation of the N-S dative bond is nearly (but not entirely) complete in the gas phase. Comparison with previous work on the closely related system H_3N -SO $_3$ indicates that the increased basicity of the $(CH_3)_3N$ relative to that of H_3N is effective at driving the dative bond further towards completion. Analysis of nuclear hyperfine structure indicates that about 0.6 electrons are transferred from the nitrogen to the SO $_3$ upon formation of the complex. This is significantly larger than that observed in H_3N -SO $_3$. The dipole moment, obtained from Stark effect measurements, of 7.111(7) D, arises from a combination of charge transfer, out-of-plane distortion of the SO $_3$ and the intrinsic moment of $(CH_3)_3N$.