ENERGY AND LIFETIME OF HIGHLY PREDISSOCIATIVE LEVELS OF THE CH C $^{2}\Sigma^{+}$ and D $^{2}\Pi$ states determined with two-color resonant four-wave mixing spectroscopy

<u>YUAN-PERN LEE</u>, XINGHUA LI, AWADHESH KUMAR, CHIH-CHANG SHIAO, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043.

We demonstrate an application of two-color resonant four-wave mixing (TC-RFWM) spectroscopy to detect highly predissociative levels of the $C \ ^{2}\Sigma^{+}$ AND $D \ ^{2}\Pi$ states of CH in a hostile environment of an oxyacetylene flame. The 1-1 band of the $C \ -X$ transition is detected with the probe and the grating wavelengths in resonance with the $A \ ^{2}\Delta \ -X \ ^{2}\Pi$ and $C \ ^{2}\Sigma^{+} \ -X \ ^{2}\Pi$ transitions, respectively. Six branches of the $C \ -X$ system are spectrally resolved for the first time; in total 124 lines detected in this work correspond to excitation of the $C \ (v = 1)$ state up to N' = 23. Observed wave numbers are fitted to yield improved spectral parameters of the $C \ ^{2}\Sigma^{+}$ state. The D state was observed by using two grating beams in resonance with the $D \ ^{2}\Pi \ -B \ ^{2}\Sigma^{-}$ transition and the pump beam in resonance with a known $B \ ^{2}\Sigma^{-} \ -X \ ^{2}\Pi$ transition. A total of 86 lines associating with transitions to the $D \ (v = 0)$ state with rotational quantum number N' up to 16 were detected; spectral parameters of the $D \ ^{2}\Pi \ (v = 0)$ state were determined. Linewidth, broadened due to predissociation, up to 6 cm⁻¹ were observed. Predissociation mechanisms of both the C and the D states are discussed.