GIANT TORSIONAL SPLITTINGS IN THE PARALLEL FUNDAMENTAL BAND ($\nu_5=1 \leftarrow 0$) OF CH₃SiH₃

J. SCHRODERUS^a, Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1; N.MOAZZEN-AHMADI, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4; <u>I. OZIER</u>, Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1.

The lowest frequency parallel fundamental band ν_5 of CH₃SiH₃ near 700 cm⁻¹ has been measured at a resolution of 0.004 cm⁻¹ with Fourier transform spectroscopy. The torsional fine structure in the spectrum is increased from ~0.005 to ~1 cm⁻¹ by the anharmonic interactions between the torsional stack of levels ($\nu_6=0,1,2...$) in the ground vibrational state and the corresponding stack with ($\nu_5=1$). For given (ν_5 , ν_6 , J, k), the torsional sub-levels are labelled by the index $\sigma=0,+1,-1$. For several (k,σ), resonant or near-resonant interactions occur between the vibration-torsion levels ($\nu_5=0, \nu_6=5$) and ($\nu_5=1, \nu_6=0$). For ($k=1, \sigma=-1$), the mixing is so severe that perturbation-allowed transitions ($\nu_6=5\leftarrow0$) have been observed. In spite of the fact that ν_6 changes by 5 units, the mixing causes the probability density as a function of the torsional angle to have a local maximum for ($\nu_5=1, \nu_6=0$) in the centre of the classically forbidden region inside the torsional barrier. This severe mixing with such large $|\Delta \nu_6|$ has serious implications for vibration-rotation relaxation in molecules with low frequency, highly anharmonic vibrational modes.

A detailed fit to over 3400 transition frequencies has been made to within experimental accuracy using a vibration-torsion-rotation Hamiltonian with 45 parameters. The treatment includes a third stack of torsional levels in the lowest-lying degenerate mode ν_{12} near 525 cm⁻¹. The Hamiltonian is severely constrained by a wide variety of infrared, microwave and molecular beam transitions. The analysis shows that the second term in the Fourier expansion of the hindering potential characterized by the parameter V_6 is dominantly due to these Fermi-type interactions. The changes in the effective molecular parameters caused by removing the non-resonant anharmonic interactions by contact transformation will be discussed.

^a Present address: Department of Physical Sciences, University of Oulu, P.O. Box 3000, Oulu, Finland, FIN 90401