PRODUCTION OF $O(^{1}D)$ IN THE RYDBERG STATES OF O_{2} BY PHOTODISSOCIATION IN THE WAVELENGTH REGION 105-130 NM

<u>P. C. LEE</u> and J. B. NEE, *Department of Physics and Chemistry, National Central Univ., Chung-li, Taiwan, 320, R. O. C.*.

The metastable $O({}^{1}D)$ produced in the photodissociation of O_{2} in the Rydberg states lying in the wavelength region 105-130 nm were investigated. The detection of $O({}^{1}D)$ was made by measuring the infrared emission at 762 nm from the transition $O_{2}(b^{1}\Sigma_{g}^{+} - X^{3}\Sigma_{g}^{-})$ produced by $O({}^{1}D) + O_{2}$. The excited states of O_{2} can be classified as either the ${}^{3}\Sigma_{u}^{-}$ states, which are correlated with $O({}^{1}D) + O({}^{3}P)$, or the ${}^{3}\Pi_{u}$ states, which are correlated with $O({}^{3}P) + O({}^{3}P)$.

Our studies resulted in the determination of the quantum yields for producing $O(^1D)$ for many bands of the $E^3\Sigma_u^-$ states. We assigned several series of Rydberg states, and found the mixing of the $^3\Sigma_u^-$ and $^3\Pi_u$ at some wavelengths. Furthermore, a band at 116.3 nm was observed to emit weakly in the visible region.