THE OPACITY OF TiO

DAVID W. SCHWENKE, NASA Ames Research Center, Mail Stop 230-3, Moffett Field, CA 94035-1000.

We have computed a high temperature (4,000K) opacity database for TiO. The electronic states considered are X ${}^{3}\Delta$, E ${}^{3}\Pi$, D ${}^{3}\Sigma^{-}$, A ${}^{3}\Phi$, B ${}^{3}\Pi$, C ${}^{3}\Delta$, a ${}^{1}\Delta$, d ${}^{1}\Sigma^{+}$, b ${}^{1}\Pi$, c ${}^{1}\Phi$, f ${}^{1}\Delta$, and two additional singlets, which we call g ${}^{1}\Gamma$, and h ${}^{1}\Sigma^{+}$. These calculations include spinorbit and rotation-orbit coupling of the electronic states, so we explicitly obtain predictions for both allowed and forbidden transitions. When possible, the potential energy curves and spin-orbit and rotation-orbit functions were parameterized by fitting to experimental data, and when not possible, the results from *ab initio* electronic structure theory are used. It was possible to fit experimental data very well for most bands, with the exceptions being the B and C states. It is probable that experimental data for $v \ge 2$ is required to improve the description of the B state. The transition moments and dipole moments used were obtained from *ab initio* electronic structure calculations.