HIGH RESOLUTION INFRARED SPECTRUM OF THE RING-PUCKERING BAND, ν_{10} , OF DIBORANE

W. J. LAFFERTY, Optical Technology Division, NIST, Gaithersburg, MD 20899-8441; J.-M. FLAUD, Laboratoire de Photophysique Moléculaire, CNRS, Université de Paris Sud, Orsay, 91405 FRANCE; R. L. SAMS, T. A. BLAKE and S. W. SHARPE, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352.

We are in the process of studying all the infrared active fundamentals of diborane; the spectrum from $280~\rm cm^{-1}$ to $2700~\rm cm^{-1}$ has been recorded, and band-by-band analysis is in progress. The analysis of the lowest frequency band centered near $369~\rm cm^{-1}$, ν_{10} , which results from the ring puckering vibration, will be presented in this talk. The spectrum of a sample with boron in natural abundance (19 % $^{10}\rm B$, 81% $^{11}\rm B$) as well as one enriched in $^{10}\rm B$ has been obtained with a resolution of $0.0015~\rm cm^{-1}$ and a S/N of better than 500 to 1. This band appears to be the only unperturbed band in the diborane spectrum, and assignment of the three beautiful b-type bands of the $^{10}\rm B_2H_6$, $^{10}\rm B_1^{11}BH_6$ and $^{11}\rm B_2H_6$ isotopomers was straightforward despite the fact that the band centers of all three isotopomers fall within $0.05~\rm cm^{-1}$ of each other. In the enriched $^{10}\rm B$ sample the hot band, $2\nu_{10}$ - ν_{10} , could be completely assigned and spectroscopic constants obtained for the A_g $2\nu_{10}$ state.