HIGH RESOLUTION ANALYSIS OF THE ν_1 AND ν_3 BANDS OF THE ${}^{17}O^{17}O^{16}O$ AND ${}^{17}O^{16}O^{17}O$ ISOTOPIC SPECIES OF OZONE IN THE 10 μ m REGION

<u>A. PERRIN</u>, J.-M. FLAUD, Laboratoire de Photophysique Moléculaire, CNRS, Université Paris Sud, Campus d'Orsay, Bat 210, 91405 Orsay Cedex, France; A. VALENTIN, C. CAMY-PEYRET, Laboratoire de Physique Moléculaire et Applications, C.N.R.S., Université Pierre et Marie Curie, Tour 13, 4 Place Jussieu, 75252 Paris, Cedex 05, France.

Using 0.002cm^{-1} Fourier transform absorption spectra of ¹⁷O- enriched sample of ozone, an extensive analysis of the ν_3 band together with a partial identification of the ν_1 band of the ¹⁷O¹⁷O¹⁶O and ¹⁷O¹⁶O¹⁷O isotopic species of ozone has been performed in the 10 μ m region. The experimental rotational levels of the (001) and (100) vibrational states could be reproduced using an Hamiltonian matrix which takes into account the expected rovibrational resonances. As for the other C_s -type ozone isotopomers ^a, the (001) rotational levels of ¹⁷O¹⁶O¹⁷O¹⁶

^aJ.-M.Flaud and R.Bacis, Spectrochimica Acta, <u>A54</u>, 3 (1998)