INFRARED ABSORPTION SPECTROSCOPY OF SMALL CARBON CLUSTER \cdot WATER COMPLEXES ISOLATED IN SOLID Ar

MARK DIBBEN, JAN SZCZEPANSKI and MARTIN VALA, Department of Chemistry and The Center for Chemical Physics, Gainesville, FL 32611.

The 1:1 complexes between C_n ($n \le 13$) carbon clusters and the H_2O molecule formed in Ar matrices at 12K have been investigated experimentally. In addition, IR absorption bands found with higher energy than the $C_n \cdot H_2O$ C-C stretching bands have been assigned to 1:2 complexes with the general structure $H_2O \cdot C_n \cdot H_2O$, rather than $C_n \cdot (H_2O)_2$. The proposed structure is supported by geometry optimization and harmonic frequencies calculated at B3LYP/6-31G** level for the $C_n \cdot H_2O$, $H_2O \cdot C_n \cdot H_2O$ and $C_n \cdot (H_2O)_2$ systems. In particular, the ^{13}C -labeled experimental spectra for $^{12/13}C_5 \cdot H_2O$ and $^{12/13}C_6 \cdot H_2O$ complexes will be presented and compared to the calculated ones at the B3LYP/6-31G** level. The C_nO and C_2H_2 final photoproducts observed after UV matrix photolysis will be discussed within the context of possible photo-production of these species in interstellar space. cd

^aB.J. Ortman, R.H. Hauge, J.L. Margrave, and Z.H. Kafafi, J. Phys. Chem. <u>94</u>, 7973 (1990).

^bJ. Szczepanski, S. Ekern, and M. Vala, J. Phys. Chem. <u>99</u>, 8002 (1995).

^cS. Ekern, J. Szczepanski, and M. Vala, J. Phys. Chem. 100, 16109 (1996).

^dS. Ekern and M. Vala, J. Phys. Chem. <u>101</u>, 3601 (1997).