DETERMINATION OF THE PROTON TUNNELING SPLITTING OF MALONALDEHYDE IN THE GROUND STATE BY MILLIMETER-WAVE SPECTROSCOPY

T. BABA and T. TANAKA, Department of Chemistry, Kyushu University, Fukuoka, 812-8581 Japan; I. MORINO and K. M. T. YAMADA, National Institute for Advanced Interdisciplinary Research (NAIR), Tsukuba, 305-8562 Japan; KEIICHI TANAKA, Institute for Molecular Science (IMS), Okazaki, 444-8585 Japan.

Due to the proton tunneling motion, the ground state of malonaldehyde is split into a doublet. The transitions connecting the lower(0^+) and upper(0^-) components of the tunneling doublet were observed by submillimeter-wave spectroscopy employing BWO tubes. So far, more than two hundred Q- and R-branch tunneling-rotation transitions were identified in the frequency region of 642-745 GHz together with about fifty pure rotational lines for both the 0^+ and 0^- sublevels.

The present submillimeter-wave data were analyzed together with the reported pure rotational lines by the millimeter-wavea and TuFIRb spectroscopy. The proton tunneling splitting in the ground state $\Delta_0 = 647046.208 \pm 0.019$ MHz, and the tunneling-rotation interaction constant $F = 45.8965 \pm 0.0082$ MHz, were determined as well as the rotational and centrifugal distortion constants for each tunneling sublevels. From the line intensities, the a-component of transition moment, responsible to the tunneling-rotation transitions, turned out to be about one tenth of the b-component of dipole moment (2.58 D), responsible to the pure rotational transitions.