INFRARED SPECTROSCOPIC EVIDENCE FOR NeHF⁺ AND HFFH⁺ TRAPPED IN SOLID NEON

CATHERINE L. LUGEZ, <u>MARILYN E. JACOX</u>, and RUSSELL D. JOHNSON III, *National Institute of Stan*dards and Technology, Gaithersburg, MD 20899-8441.

When a Ne:HF mixture is subjected to Penning ionization and/or photoionization by neon atoms in their first excited states, between 16.6 eV and 16.85 eV, and the products are rapidly frozen at approximately 5 K, the infrared spectrum of the resulting deposit includes absorptions assigned to NeHF⁺ and HFFH⁺. Evidence is presented suggesting that neon-matrix shifts may be anomalously large for protonated molecules which are derived from species with proton affinities near or below 550 kJ/mol. The results of earlier *ab initio* studies, as well as those of the present experimental and *ab initio* studies, indicate that the NeHF⁺ complex is quite strongly bound. The ν_3 absorptions of NeHF⁺ and NeDF⁺ are identified, and the $\nu_1 + \nu_3$ absorption of NeHF⁺ is tentatively identified. An absorption at 3064.7 cm⁻¹ has isotopic substitution behavior appropriate for its assignment to HFFH⁺. Density functional and more elaborate *ab initio* calculations support this assignment.