THE LOW-LYING XCN BENDING MODES OF THE QUASILINEAR MOLECULES CICNO AND BrCNO

STEPHEN C. ROSS, Department of Physics, University of New Brunswick, Fredericton NB E3B 5A3, Canada; <u>HOLGER LICHAU</u>, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, Physikalisch-Chemisches Institut, Justus-Liebig-Universität, D-35392 Gießen, Germany.

From the satellite structures in the *a*-type rotational spectra, the halofulminates CICNO and BrCNO have been shown to be extremely quasilinear molecules, definitely more quasilinear than fulminic acid HCNO and roughly comparable to carbon suboxide OCCCO^{*ab*}. In order to obtain a more fundamental description of the quasilinear dynamics, we have determined effective bending potentials for the anharmonic XCN bending modes of the two molecules by *semirigid bender* analyses of the *a*-type rotational data. Fitting Barrow-Dixon-Duxbury potential functions^{*c*}, the effective barriers to linearity have been determined to be 167 and 131 cm⁻¹, the origins of the ^{*r*}Q₀ branches in the vibrational ground states to be 17.7 and 16.0 cm⁻¹, and the quasilinearity parameters γ_0^{d} to be +0.416 and +0.362, respectively. These results will be compared to some results published for several other chain molecules.

^aC. W. Gillies, J. Z. Gillies, H. Lichau, B. P. Winnewisser, and M. Winnewisser, Chem. Phys. Lett. 285, 391–397 (1998)

^bH. Lichau, B. P. Winnewisser, M. Winnewisser, C. W. Gillies, and J. Z. Gillies, 53rd Int. Symposium, talk TH09 (1998)

^cT. Barrow, R. N. Dixon, and G. Duxbury, *Mol. Phys.* 27, 1217–1234 (1974)

^dK. M. T. Yamada and M. Winnewisser, Z. Naturforsch. 31a, 139-144 (1976)