HIGH PRECISION MEASUREMENT OF C-O STRETCHING BAND OF CH₃OH USING CO₂ LASER SIDEBANDS

Z. D. SUN, F. MATSUSHIMA, S. TSUNEKAWA, and K. TAKAGI, Department of Physics, Toyama University, Toyama 930-8555, Japan.

Microwave sidebands of CO_2 laser lines have been used as an infrared power source to measure the sub-Doppler vibration-rotation frequencies of CH_3OH in the C-O stretching band precisely. More than one hundred frequencies of CH_3OH have been measured. Over thirty groups of unresolved lines in the Fourier-transform spectrum have been resolved. Combined with our previous infrared-microwave double resonance results^a and the ground state ($v_{co} = 0$) term values given in literature^b, many term valves of CH_3OH in the $v_{co} = 1$ stretching states have been refined. For A species in $v_{co} = 1$, 22 asymmetry splittings for various $v_{co} = 1$ and 1 have been observed for the first time. The present results provide precision data to refine the molecular constants in the first excited C-O stretching state of CH_3OH .

 $^{^{}a}$ Z. D. Sun, S. Ogura, F. Matsushima, S. Tsunekawa and K. Takagi, paper RA08 at the " 53^{rd} Ohio State University International Symposium on Molecular Spectroscopy", Columbus, Ohio (1998).

^bG. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, *Microwave, infrared and laser transitions of methanol*, (CRC Press, Inc. 1995).