PURE ROTATIONAL SPECTRUM OF THE TRANSITION METAL SILICIDE PtSi

<u>DALE J. BRUGH</u> and RICHARD D. SUENRAM, National Institute of Standards and Technology, Optical Technology Division, Gaithersburg, MD 20899.

Laser vaporization of a Pt target rod in the throat of a supersonic expansion of Ar seeded with 1% SiH₄ has produced the diatomic PtSi in sufficient abundance to allow the J=1-0 and J=2-1 pure rotational transitions in the v = 0 level of ¹⁹⁴Pt²⁸Si, ¹⁹⁵Pt²⁸Si, and ¹⁹⁶Pt²⁸Si to be recorded in the ¹ Σ^+ ground state. The measured line positions have allowed the rotational constant for each of these isotopic modifications to be determined as B(¹⁹⁴Pt²⁸Si)=4854.3637 MHz, B(¹⁹⁵Pt²⁸Si)=4851.2175 MHz, and B(¹⁹⁶Pt²⁸Si)=4848.1152 MHz. Work is currently under way to determine the dipole moment of PtSi.