CH2 ANTISYMMETRIC STRETCHING VIBRATIONS OF THE ALLYL RADICAL

DAIRENE UY, <u>SCOTT DAVIS</u>, DAVID J. NESBITT, JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440.

A glow discharge, slit supersonic expansion in conjunction with direct infrared laser absorption have been utilized to record high resolution vibration-rotation spectra of the C₃H₅ allyl radical. The slit supersonic expansion results in efficient rotational cooling $(T_{rot} \leq 20K)$, thereby facilitating assignment. Specifically, approximately 50 transitions are assigned for both the in-phase (ν_1) and out-of-phase (ν_{13}) CH₂ antisymmetric vibrations. Least squares fits of the transition frequencies to an asymmetric top Hamiltonian provide both ground and excited state rotational constants. While the overall quality of the fits ($\sigma \approx 5 \times 10^{-4} \text{ cm}^{-1}$) are good, residuals do indicate perturbations in the vibrationally excited state. Due to the high instrumental resolution (slit supersonic Doppler width ≈ 70 MHz) spin-rotation broadening is observed in several low J transitions. Small step size (4 MHz) scans over selected transitions coupled with a detailed lineshape analysis indicate a spin-rotation constant ε_{aa} of -47(4) MHz.