ELECTRONIC SPECTROSCOPY OF Be2: EXPERIMENTAL AND THEORETICAL RESULTS

L. A. KALEDIN, A. L. KALEDIN, M. C. HEAVEN, Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322; V. E. BONDYBEY, Institut fur Physikalische und Theoretische Chemie der TU Munchen, W-8046 Garching, Germany.

Low-lying electronic states of Be_2 have been examined using laser excitation techniques. The dimer was formed by pulsed laser ablating Be into a free-jet expansion. Dimer formation was enhanced by liquid nitrogen cooling of the nozzle assembly.

Dispersed fluorescence spectra were recorded following excitation of various vibrational levels of the $B^{1}\Sigma_{u}^{+}$ state. These spectra revealed bands of the previously unobserved $B^{1}\Sigma_{u}^{+} \rightarrow A'^{1}\Pi_{g}$ transition. The term energy (T₀=13,942<u>+</u>20cm⁻¹) and vibrational interval $\Delta G_{1/2} = 717 \pm 20$ cm⁻¹) for the A' state were determined for the first time.

Potential energy curves and electronic transition moments for Be_2 were calculated using EOM coupled cluster and MRSDCI levels of theory with a (12s6p3d2f1g)/[5s4p3d2f1g] basis set. The properties of low-lying singlet, triplet, and quintet states were predicted. The MRSDCI results were found to be in excellent agreement with experimental observations^{*a*}

^{*a*}V. E. Bondybey, Chem. Phys. Lett. **109**, 436 (1984)