THE STRUCTURE, THE INTERNAL ROTATION OF $\rm N_2$ AND THE ROTATION OF THE ELECTRONIC TRANSITION MOMENT IN THE PARA-DIFLUOROBENZENE- $\rm N_2$ VAN DER WAALS COMPLEX

QUAN JU, CHARLES S. PARMENTER, Department of Chemistry, Indiana University, Bloomington IN 47405.

Cold jet $S_1 \leftarrow S_0$ rotational band contours have been obtained at 0.3 cm^{-1} resolution for the p-difluorobenzene-N₂ (pDFB-N₂) van der Waals complex and analyzed with an asymmetric top simulation program. Satisfactory simulation is possible only if it is assumed that the in-plane electronic transition moment of pDFB-N₂ rotates about 37^o towards the F-F axis from its position normal to that axis in free pDFB. The vdW bond distances from the ring plane to the N₂ bond parallel to that plane are 3.47Åand 3.42Åin the S₁ and S₀ states, respectively. Several transitions involving the internal rotation of N₂ about an axis perpendicular to the ring plane have been assigned. The band positions are consistent with two-fold rotational barriers of 14.0 cm^{-1} and 19.0 cm^{-1} for the S₀ and S₁ states, respectively. These barriers are in agreement with those recently ^{*a*} determined from the assignments of different internal rotor transitions seen in the R2PI spectra.

^aY. Hu, W. Lu and S. Yang, J. Photoch. Photobio. A, 106, 91(1997).