AB INITIO STUDY OF THE AMERICYL AND CURYL IONS

SCOTT R. BROZELL and RUSSELL M. PITZER, Department of Chemistry, The Ohio State University, Columbus, OH 43210.

Restricted Hartree-Fock (RHF) and spin-orbit configuration-interaction (SOCI) calculations were performed on the ground and low-lying excited states of the americyl ion, AmO_2^{2+} . The RHF $\delta_u^2 \, \phi_u^1 \, ,^4 \Phi_u$ ground state symmetric stretch potential energy curve yields a frequency of 900 cm⁻¹ compared to an experimental value of 730 cm⁻¹ from Raman spectroscopy on aqueous solutions^a of AmO_2^{1+} . The SOCI ground state is $\delta_u^2 \, \phi_u^1 \, ,^4 \Phi_{3/2u}$; the excited states are regular components from the above term followed by irregular components from the $\delta_u^1 \, \phi_u^2 \, ,^4 \Delta_u$ term. The low energy transitions are $f \to f$. Analogous calculations are planned for the curyl ion, CmO_2^{2+} . The actinides are modeled with relativistic effective core potentials and Gaussian correlation consistent double-zeta plus polarization (cc-pVDZ) basis sets.

^aG. M. Begun et al., Inorg. Chem. 23, 1914 (1984).