An algebraic theory, based upon expansion of the molecular Hamiltonian in terms of bosonic creation and annihilation operators, has been used to extract detailed vibrational information from vibronically-resolved emission spectra of jet-cooled \(\text{S}_2\text{O} \) molecules. The fluorescence accompanying selective excitation of single rovibronic lines in the \(2^3 \text{S}_{\text{II}} \) and \(2^3 \text{S}_{\text{II}} \) \((v=0-3)\) bands of the intense \(\text{C} \ 1\text{A}' \leftarrow \text{X} \ 1\text{A}' (\pi^* \leftarrow \pi) \) absorption system were dispersed under moderate spectral resolution \((5-10 \text{ cm}^{-1})\). Ground state vibrational levels possessing as much as 20 quanta of excitation in the \(\nu_2 \) S-S stretching mode and residing up to \(\sim 13000 \text{ cm}^{-1} \) above the vibrationless \(\text{X} \ 1\text{A}' \) zero-point energy have been observed and assigned.

Detailed analyses of \(\text{S}_2\text{O} \) vibrational energies within the \(\text{X} \) and \(\text{C} \) manifolds, as well as their interconnecting vibronic resonances, have been performed through a \(U(2) \) based algebraic treatment. Although computationally no more intensive than a Dunham-like expansion, this approach offers the ability to extract multidimensional wavefunctions and related vibrational information. In particular, Franck-Condon factors and vibronic transition amplitudes can be evaluated efficiently without recourse to arduous numerical calculations. The emerging picture of \(\text{S}_2\text{O} \) vibrational dynamics suggests that the \(\text{X} \ 1\text{A}' \) surface is substantially more “local” in nature than the \(\text{C} \ 1\text{A}' \) state, with the latter exhibiting significant mixing of vibrational character among the \(\nu_1 \) (S-O stretching), \(\nu_2 \) (S-S stretching) and (to a lesser extent) \(\nu_3 \) (bending) degrees of freedom. Structural parameters deduced from algebraic analyses largely confirm the \(\text{C} \ 1\text{A}' \) equilibrium geometry inferred from previous studies under the assumption of an unchanged S-O bond length upon \(\text{C} \leftarrow \text{X} \) excitation.

\textit{a}Permanent address: High Magnetic Field Laboratory, CNRS, BP 166, 38042 Grenoble, Cedex 9 (France)

\textit{b}Permanent address: Facultad de Física, Universidad de Sevilla, Apartado Postal 1065, 41080 Sevilla (Spain)