FAR-INFRARED LASER MAGNETIC RESONANCE SPECTROSCOPIC STUDY OF THE ν_2 BENDING FUNDAMENTAL OF THE CCN RADICAL IN ITS $\tilde{X}^2\Pi_r$ STATE

M. D. ALLEN, K. M. EVENSON, *Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80303-3328*; and J. M. BROWN, *The Physical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3OZ, United Kingdom.*

Vibration-rotation transitions between the (010) $\mu^2\Sigma^-$ - (000) $\tilde{X}^2\Pi_r$ vibronic states, were recorded using far-infrared laser magnetic resonance (FIR-LMR) spectroscopic techniques. These transitions occur near 200 cm⁻¹ for the (010) $\mu^2\Sigma^-$ - (000) $\tilde{X}^2\Pi_{1/2}$ transition and 160 cm⁻¹ for the (010) $\mu^2\Sigma^-$ - (000) $\tilde{X}^2\Pi_{3/2}$ transition. This is the first direct measurement of the ν_2 band of CCN and in conjunction with a fit of optical data, similar to the one found in the paper by Kohguchi et al., a has resulted in an accurate determination of the bending vibration frequency and the Renner parameter. The data were fit using an N^2 effective Hamiltonian modified to include the Renner-Teller effect.

^aH. Kohguchi, Y. Ohshima, Y. Endo, J. Chem. Phys. **106**, 5429 (1997).