LIFETIME-MEDIATED POLARIZATION EFFECTS IN NONLINEAR SPECTROSCOPY: DEGENERATE FOUR-WAVE MIXING STUDIES OF PREDISSOCIATED S₂O IN A SLIT-JET EXPANSION

<u>THOMAS MÜLLER</u>, PATRICK DUPRÉ^{*a*}, QINGGUO ZHANG^{*b*}, and PATRICK H. VACCARO, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520.

Transient S₂O molecules were entrained in a pulsed slit-jet expansion ($T_{rot} < 10$ K) and interrogated through use of sub-Doppler <u>D</u>egenerate <u>Four-Wave Mixing</u> (DFWM) spectroscopy. High-resolution scans have been acquired for the 2_o^v (ν =3-10) vibronic bands of the intense \tilde{C} ¹A' ($\pi^* \leftarrow \pi$) absorption system, where increasing excitation of the ν_2 S-S stretching mode is known to promote predissociation of the \tilde{C} state.

For bands involving moderately-predissociated states (e.g., 2_0^4 where $\tau_{\tilde{c}} \simeq 63 \text{ ps}$), the recorded pattern of rovibronic line intensities exhibits a pronounced dependence upon DFWM polarization geometry, a situation not encountered in analogous studies performed for features terminating on long-lived levels of the \tilde{C} manifold (e.g., 2_0^3 where $\tau_{\tilde{c}} \simeq 22 \text{ ns}$). This behavior can be reproduced quantitatively through detailed weak-field analyses of the resonant DFWM response, however, a qualitative understanding follows from the selective dissipation of optically-induced transient gratings as incurred by unimolecular relaxation pathways. In strongly-predissociated members of the 2_0^v progression (i.e., $v \ge 5$), additional polarization specificity is introduced by the presence of strong depopulation pumping processes which lead to the creation of net orientation and/or alignment of the molecular ensemble on a timescale commensurate with that of the pulsed four-wave mixing experiment

Owing to its absorption-based response and laser-limited spectral resolution, DFWM is often applied to target species where rapid nonraditive relaxation channels preclude successful exploitation of detection techniques based upon secondary matter-field interactions (e.g., fluorescence or ionization). Therefore, a detailed understanding of the role which molecular lifetime plays as a mediator for resonant nonlinear response is of central importance for the quantitative application of this optical scheme.

^aPermanent address: High Magnetic Field Laboratory, CNRS, BP 166, 38042 Grenoble, Cedex 9 (France)

^bPresent address: G. R. Harrison Spectroscopy Laboratory, MIT, Cambridge, MA 02139