LIFETIME-MEDIATED POLARIZATION EFFECTS IN NONLINEAR SPECTROSCOPY: DEGENERATE FOUR-WAVE MIXING STUDIES OF PREDISSOCIATED S₂O IN A SLIT-JET EXPANSION

THOMAS MÜLLER, PATRICK DUPRÉ, QINGGUO ZHANG, and PATRICK H. VACCARO, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520.

Transient S₂O molecules were entrained in a pulsed slit-jet expansion (T_rot < 10 K) and interrogated through use of sub-Doppler Degenerate Four-Wave Mixing (DFWM) spectroscopy. High-resolution scans have been acquired for the 2ν₁(v=3-10) vibronic bands of the intense C¹Σ⁺ ← X¹Σ⁺ (π* ← π) absorption system, where increasing excitation of the S-S stretching mode is known to promote predissociation of the Ĉ state.

For bands involving moderately-predissociated states (e.g., 2ν₁ where τₑ ≈ 63 ps), the recorded pattern of rovibronic line intensities exhibits a pronounced dependence upon DFWM polarization geometry, a situation not encountered in analogous studies performed for features terminating on long-lived levels of the Ĉ manifold (e.g., 2ν₀ where τₑ ≈ 22 ns). This behavior can be reproduced quantitatively through detailed weak-field analyses of the resonant DFWM response, however, a qualitative understanding follows from the selective dissipation of optically-induced transient gratings as incurred by unimolecular relaxation pathways. In strongly-predissociated members of the 2ν₁ progression (i.e., ν ≥ 5), additional polarization specificity is introduced by the presence of strong depopulation pumping processes which lead to the creation of net orientation and/or alignment of the molecular ensemble on a timescale commensurate with that of the pulsed four-wave mixing experiment.

Owing to its absorption-based response and laser-limited spectral resolution, DFWM is often applied to target species where rapid nonradiative relaxation channels preclude successful exploitation of detection techniques based upon secondary matter-field interactions (e.g., fluorescence or ionization). Therefore, a detailed understanding of the role which molecular lifetime plays as a mediator for resonant nonlinear response is of central importance for the quantitative application of this optical scheme.

Permanent address: High Magnetic Field Laboratory, CNRS, BP 166, 38042 Grenoble, Cedex 9 (France)
Present address: G. R. Harrison Spectroscopy Laboratory, MIT, Cambridge, MA 02139