NON-ADIABATIC PROCESSES IN THE PHOTODISSOCIATION OF QUARTET STATE Na_3 AND K_3

<u>GIACINTO SCOLES</u>, JAMES REHO, JOHN P. HIGGINS, CARLO CALLEGARI, AND KEVIN K. LEHMANN, *Department of Chemistry, Princeton University, Princeton, NJ* 08544.

Excitation of both the $2^4E' \leftarrow 1^4A'_2$ transition of Na_3 and the $1^4A''_2 \leftarrow 1^4A'_2$ transition of K_3 lead to curve-crossings into a predissociative doublet state as evidenced by the presence of atomic $(P \to S)$ and singlet dimer $B \to X$ fluorescing products. Single photon counting techniques have been employed to measure the intersystem crossing times in these simple systems by measuring the onset times of product fluorescence as a function of the vibrational state of the upper quartet state. We find that the spin-orbit mediated intersystem crossing occurs as expected more rapidly for K_3 than for Na_3 while, for the latter system, the rapidity of the process increases as we move to higher vibronically excited states.