INVESTIGATION OF THE B' STATE OF CaF and CaCl

R. LAWRUSZCZUK, J. ROSTAS and B. SOEP, Laboratoire de Photophysique Moléculaire, Université Paris Sud, 91405 Orsay Cédex, France.

The $B^{'2}\Delta$ states of CaF and CaCl have been excited directly, under specific experimental conditions, through the $B^{'2}\Delta - X^2\Sigma^+$ forbidden transition, and detected by collecting the A-X or B-X fluorescence. Rotational analysis of the B'-X(0-0) band provides accurate molecular parameters in good agreement with those obtained previously by Verges et al.^a in the case of CaF. For CaCl, the $B^{'2}\Delta$ state, observed for the first time lies at 19232 cm⁻¹ above the ground state, in excellent agreement with its position (19319 cm⁻¹) predicted by the Ligand Field Theory. The spin-orbit coupling constant A^{SO} for CaF and CaCl are close, indicating that the molecular structure is mainly governed by the Ca⁺ metal ion and only slightly by the ligand. Several excitation and deexcitation mechanisms, which may contribute, will be discussed.

^aVerges, Effantin, Bernard, Toupouzkhanian, Allouche, d'Incan and Barrow, J. Phys. B., At. Mol. Opt. Phys., 26, 279-284 (1993)