THE ULTRA VIOLET SPECTRUM OF TeO2

DANIEL F HULLAH and JOHN M BROWN, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.

The laser induced fluorescence spectrum of TeO_2 has been recorded between 345 nm and 405, using a high temperature nozzle source. The spectrum shows a considerable improvement in signal-to-noise ratio in comparison with that of Dubois¹ and this has lead to a reassignment of the vibrational structure, including the band origin.

To date, 58 vibrational bands (27 cold and 31 hot) have been reassigned to the ${}^{1}B_{2}-{}^{1}A_{1}$ electronic transition of TeO₂. The values of the band origin and the vibrational frequencies for the symmetric stretch (ω_{1}) and bending (ω_{2}) modes are given as follows (values are in cm⁻¹)

 $\nu_0=25526$ $\omega'_1=678$ $\omega'_2=220$ $\omega''_1=822$ $\omega''_2=281$.

Measurements at high resolution are planned to allow a rotational analysis. Following on from this work, the products of the high temperature reaction $Te + H_2O$ are to be investigated.

Reference

1. I. Dubois, Bulletin de la Societé Royale de Liege, 39^e année, nº 1-2, 63 (1970)